logo logo

Easy Branches allows you to share your guest post within our network in any countries of the world to reach Global customers start sharing your stories today!

Easy Branches

34/17 Moo 3 Chao fah west Road, Phuket, Thailand, Phuket

Call: 076 367 766

info@easybranches.com
Technology Gadgets

MIT Researchers Measure Quantum Geometry of Electrons in Solid Materials for First Time

Physicists at MIT have successfully measured the quantum geometry of electrons in solids, marking a pivotal moment in quantum research. This was achieved using an advanced adaptation of angle-resolved photoemission spectroscopy (ARPES), enabling dire


  • Dec 24 2024
  • 0
  • 10551 Views
MIT Researchers Measure Quantum Geometry of Electrons in Solid Materials for First Time
MIT Researchers Measure Quantum Geometry of Electrons in Solid Materials for First Time

A new study has allowed physicists from the Massachusetts Institute of Technology (MIT) and collaborators to measure the quantum geometry of electrons in solids. The research provides insights into the shape and behaviour of electrons within crystalline materials at a quantum level. Quantum geometry, which had previously been limited to theoretical predictions, has now been directly observed, enabling unprecedented avenues for manipulating quantum material properties, according to the study.

New Pathways for Quantum Material Research

The study was published in Nature Physics on November 25. As described by Riccardo Comin, Class of 1947 Career Development Associate Professor of Physics at MIT, the achievement is a major advancement in quantum material science. In an interview with MIT's Materials Research Laboratory, Comin highlighted that their team has developed a blueprint for obtaining completely new information about quantum systems. The methodology used can potentially be applied to a wide range of quantum materials beyond the one tested in this study.

Technical Innovations Enable Direct Measurement

The research employed angle-resolved photoemission spectroscopy (ARPES), a technique previously used by Comin and his colleagues to examine quantum properties. The team adapted ARPES to directly measure quantum geometry in a material known as kagome metal, which features a lattice structure with unique electronic properties. Mingu Kang, first author of the paper and a Kavli Postdoctoral Fellow at Cornell University, noted that this measurement became possible due to collaboration between experimentalists and theorists from multiple institutions, including South Korea during the pandemic.

These experiences underscore the collaborative and resourceful efforts involved in realising this scientific breakthrough. This advancement offers new possibilities in understanding the quantum behaviour of materials, paving the way for innovations in computing, electronics, and magnetic technologies, as reported in Nature Physics.

 

Related


Share this page
Guest Posts by Easy Branches
image